Parameter Estimation and Stress-Strength Model of Power Lomax Distribution: Classical Methods and Bayesian Estimation

نویسندگان

چکیده

In this paper, parameter estimation for the power Lomax distribution is studied with different methods as maximum likelihood, product spacing, ordinary least squares, weighted Cramér–von Mises and Bayesian by Markov chain Monte Carlo (MCMC). Robust of stress-strength model Power discussed. We propose that method spacing reliable an alternative to likelihood methods. A numerical study using real data Simulation performed compare between

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

bayesian and non-bayesian estimation of stress–strength model for pareto type i distribution

this article examines statistical inference for  where and are independent but not identically distributed pareto of the first kind (pareto (i)) random variables with same scale parameter but different shape parameters. the maximum likelihood, uniformly minimum variance unbiased and bayes estimators with gamma prior are used for this purpose. simulation studies which compare the estimators are ...

متن کامل

Bayesian Methods of Parameter Estimation

The frequentest approach is the classical approach to parameter estimation. It assumes that there is an unknown but objectively fixed parameter θ [3]. It chooses the value of θ which maximizes the likelihood of observed data [4], in other words, making the available data as likely as possible. A common example is the maximum likelihood estimator (MLE). The frequentest approach is statistically ...

متن کامل

Inference of Stress-Strength Model for a Lomax Distribution

In this paper, the estimation of the stress-strength parameter ( ) X Y P R < = , when X and Y are independent and both are Lomax distributions with the common scale parameters but different shape parameters is studied. The maximum likelihood estimator of R is derived. Assuming that the common scale parameter is known, the bayes estimator and exact confidence interval of R are discussed. Simulat...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Bayesian parameter estimation via variational methods

We consider a logistic regression model with a Gaussian prior distribution over the parameters. We show that an accurate variational transformation can be used to obtain a closed form approximation to the posterior distribution of the parameters thereby yielding an approximate posterior predictive model. This approach is readily extended to binary graphical model with complete observations. For...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of data science

سال: 2021

ISSN: ['1680-743X', '1683-8602']

DOI: https://doi.org/10.6339/jds.202010_18(4).0008